Abstract

Hydroxyl radicals (•OH) generated in the photocatalytic process are crucial to the conversion of methane (CH4) to value-added methanol (CH3OH) at room temperature. However, utilizing noble metal-free catalysts and low-energy photons of solar light, such as visible and near-infrared light (vis-NIR), is difficult to provide more electron states to form •OH radicals. Here, we developed FeOOH/Li0.1WO3 core-shell nanorods via a two-step in/out co-modification of hexagonal tungsten oxide (h-WO3): (1) lithium ions intercalating into the hexagonal tunnels of h-WO3 to form Li0.1WO3 nanorods and (2) using FeOOH-wrapped Li0.1WO3 to obtain FeOOH/Li0.1WO3 core-shell nanorods. Introduction of lithium induces polaron transition in Li0.1WO3, enabling the absorption of vis-NIR light. Interestingly, FeOOH-based Fenton-like reaction when H2O2 is selected as an oxidant favors the generation of more •OH radicals available for CH4 oxidation to CH3OH. Meanwhile, FeOOH with FeIII as an "electron sink" highly improves the separation of photoinduced electrons and holes in Li0.1WO3. Eventually, efficient selective formation of CH4OH is achieved with remarkable generation rates up to ∼342 and ∼160 μmol g-1 at visible light (420-700 nm) and NIR light (≥800 nm), respectively. Our finding opens up new possibilities for developing noble metal-free catalysts for solar energy-driven CH4 conversion to CH3OH under ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.