Abstract

Noble-metal-based electrocatalysts usually contain small nanoparticle building blocks to ensure a high specific surface area as the scene for the surface processes. Here, we show that relatively large noble-metal nanorods are also promising candidates to build up functional macrostructures with prominent electrocatalytic activity. After optimizing and upscaling the syntheses of gold nanorods and gold bipyramid-templated silver nanorods, cryoaerogels are fabricated on a conductive substrate via flash freezing and subsequent freeze drying. The versatile cryoaerogelation technique allows the formation of macrostructures with dendritic, open-pore structure facilitating the increase of the accessible nanorod surfaces. It is demonstrated via electrochemical oxidation and stripping test experiments that noble-metal surface sites are electrochemically active in redox reactions. Furthermore, gold nanorod cryoaerogels offer a platform for redox sensing, ethanol oxidation reaction, as well as glucose sensing. Compared to their simply drop-cast and dried counterparts, the noble-metal nanorod cryoaerogels offer enhanced activity due to the open porosity of the fabricated nanostructure while maintaining structural stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.