Abstract

Noble-metal-based electrocatalysts usually contain small nanoparticle building blocks to ensure a high specific surface area as the scene for the surface processes. Here, we show that relatively large noble-metal nanorods are also promising candidates to build up functional macrostructures with prominent electrocatalytic activity. After optimizing and upscaling the syntheses of gold nanorods and gold bipyramid-templated silver nanorods, cryoaerogels are fabricated on a conductive substrate via flash freezing and subsequent freeze drying. The versatile cryoaerogelation technique allows the formation of macrostructures with dendritic, open-pore structure facilitating the increase of the accessible nanorod surfaces. It is demonstrated via electrochemical oxidation and stripping test experiments that noble-metal surface sites are electrochemically active in redox reactions. Furthermore, gold nanorod cryoaerogels offer a platform for redox sensing, ethanol oxidation reaction, as well as glucose sensing. Compared to their simply drop-cast and dried counterparts, the noble-metal nanorod cryoaerogels offer enhanced activity due to the open porosity of the fabricated nanostructure while maintaining structural stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.