Abstract

Novel plasmonic Bi nanoparticles deposited in situ in (BiO)2CO3 microspheres (Bi/BOC) were fabricated via a one-pot hydrothermal treatment of bismuth citrate, sodium carbonate, and thiourea. Different characterization techniques, including XRD, SEM, TEM, XPS, UV–vis DRS, PL, time-resolved fluorescence spectra, and photocurrent generation, were performed to investigate the structural and optical properties of the as-prepared samples. The results indicated that the Bi nanoparticles were generated on the surface of (BiO)2CO3 microspheres via the in situ reduction of Bi3+ by thiourea. The Bi nanoparticle deposited (BiO)2CO3 microspheres were employed for the photocatalytic removal of NO in air under visible light irradiation, and the sample exhibited a drastically enhanced photocatalytic activity and oxidation ability. The highly enhanced activity was attributed to the cooperative contribution of the surface plasmon resonance (SPR) effect, the efficient separation of electron–hole pairs, and the prolonged lif...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.