Abstract
Composites of g-C3N4/TiO2 were one-step prepared using electron impact with dielectric barrier discharge (DBD) plasma as the electron source. Due to the low operation temperature, TiO2 by the plasma method shows higher specific surface area and smaller particle size than that prepared via conventional calcination. Most interestingly, electron impact produces more oxygen vacancy on TiO2, which facilitates the recombination and formation of heterostructure of g-C3N4/TiO2. The composites have higher light absorption capacity and lower charge recombination efficiency. g-C3N4/TiO2 by plasma can produce hydrogen at a rate of 219.9 μmol·g−1·h−1 and completely degrade Rhodamine B (20mg·L−1) in two hours. Its hydrogen production rates were 3 and 1.5 times higher than that by calcination and pure g-C3N4, respectively. Electron impact, ozone and oxygen radical also play key roles in plasma preparation. Plasma has unique advantages in metal oxides defect engineering and the preparation of heterostructured composites with prospective applications as photocatalysts for pollutant degradation and water splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nanomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.