Abstract

A suite of chemical and isotope tracers (dissolved noble gases, stable isotopes of water, radiocarbon, and Cl) have been analyzed along a flow path in the Dakota aquifer system to determine likely recharge sources, ground water residence times, and the extent of mixing between local and intermediate flow systems, presumably caused by large well screens. Three water types were distinguished with the tracers, each having a very different history. Two of the water types were found in south-eastern Colorado where the Dakota is poorly confined. The tracer data suggest that the first group recharged locally during the last few thousand years and the second group was composed of ground water that recharged earlier during a cooler climate, presumably during the last glacial period (LGP) and mixed aged water. The paleotemperature record archived in this groundwater system indicates that south-eastern Colorado was about 5°C cooler during the LGP than during the late Holocene. Similar temperature changes derived from dissolved noble gases in other aquifer systems have been reported earlier for the south-western United States. The third water type was located down gradient of the first two in the confined Dakota in western and central Kansas. Groundwater residence time of this water mass is on the order of 104–105yrs and its recharge location is near the Colorado and Kansas border down gradient of the other water types. The study shows the importance of using multiple tracers when investigating ground water systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.