Abstract
Abstract–Enstatite chondrites (ECs) were subjected to noble gas analyses using stepped crushing and pyrolysis extraction methods. ECs can be classified into subsolar gas‐carrying and subsolar gas‐free ECs based on the36Ar/84Kr/132Xe ratios. For subsolar gas‐free ECs, elemental ratios, and Xe isotopic compositions indicate that Q gas is the dominant trapped component, the Q gas concentration can be correlated with the petrologic type, reasonably explained by gas release from a common EC parental material during subsequent heating. Atmospheric Xe with sub‐Q elemental ratios is found in Antarctic E3s at 600–800 °C and through crushing. The132Xe released in these fractions accounts for 30–60% of the bulk concentrations. Hence, the sub‐Q signature is generally due to contamination of elementally fractionated atmosphere. Subsolar gas is mainly released (up to 78% of the bulk36Ar) at 1300–1600 °C and through crushing, suggesting that enstatite and friable phases are the host phases. Subsolar gas is isotopically identical to solar gas, but elementally fractionated. These observations are consistent with a previous study, which suggested that subsolar gas could be fractionated solar wind having been implanted into chondrule precursors (Okazaki et al. 2001). Unlike subsolar gas‐free ECs, the primordial gas concentrations of subsolar gas‐carrying ECs are not simply correlated with the petrologic type. It is inferred that subsolar gas‐rich chondrules were heterogeneously distributed in the solar nebula and accreted to form subsolar gas‐carrying ECs. Subsequent metamorphic and impact‐shock heating events have affected noble gas compositions to various degrees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.