Abstract

The CUO molecule, formed from the reaction of laser-ablated U atoms with CO in a noble gas, exhibits very different stretching frequencies in a solid argon matrix [804.3 and 852.5 wave numbers (cm(-1))] than in a solid neon matrix (872.2 and 1047.3 cm(-1)). Related experiments in a matrix consisting of 1% argon in neon suggest that the argon atoms are interacting directly with the CUO molecule. Relativistic density functional calculations predict that CUO can bind directly to one argon atom (U-Ar = 3.16 angstroms; binding energy = 3.2 kilocalories per mole), accompanied by a change in the ground state from a singlet to a triplet. Our experimental and theoretical results also suggest that multiple argon atoms can bind to a single CUO molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call