Abstract

The bright light obtained from the quantum principle has a key role in the construction of optical sensors. Yet, theoretical and experimental work highlights the challenges of overcoming the high cost and low efficiency of such sensors. Therefore, we report a metallic nanoparticle-based metasurface plasmons polariton using quantum and classical models. We have investigated the material properties, absorption cross-section, scattering cross-section, and efficiency of the classical model. By quantizing light–matter interaction, the quantum features of light – degree of squeezing, correlation, and entanglement are quantified numerically and computationally. In addition, we note the penetration depth and propagation length from a hybrid model in order to enhance the optoplasmonic sensor performance for imaging, diagnosing, and early perception of cancer cells with label-free, direct, and real-time detection. Our study findings conclude that the frequency of incident light, size, shape, and type of nanoparticles has a significant impact on the optical properties of metallic nanoparticles and the nonlinear optical properties of metallic nanoparticles are dynamic, enhancing the sensitivity of the optoplasmonic sensor. Moreover, the resulting bright light shows the systematic potential for further medical image processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call