Abstract
This work reports on the preparation of WS2/WO3 heterostructures for the development of nitrogen dioxide (NO2) sensors via a novel wet-chemical hydrothermal route approach. Different tungsten oxides were used as seed materials, and the heterostructure were formed using thioacetamide as a source of sulfur during a second hydrothermal treatment step. Structural and morphological characterizations demonstrated that the heterostructures can be described as WS2 nanosheets deposited over the tungsten oxide phase. Compared against the respective tungsten oxide seed materials, the heterostructures exhibited significant enhancement of the sensor response to NO2. High sensor signal to a 5 ppm exposure level was observed for the WS2/WO3 microplates at a working temperature of 200 °C, with good selectivity against reducing gases and a sub 2 ppm lower detection limit. To explain the enhancement of the sensor signal, we proposed an electronic sensitization mechanism based on the electronic barriers introduced by the p-n semiconductor junctions. Overall, this work introduces a low-cost, low-temperature, versatile wet-chemical synthetic route for the fabrication of transition metal dichalcogenide-metal oxide heterostructures with potential applications for the development of sensors capable of detecting NO2 at ppm levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.