Abstract

Control over the combustion fluid dynamics was used to minimize the emission of NO x and CO. The combustion kinetics were controlled by operating the combustor premixed and were varied by modifying the equivalence ratio over the lean stability envelope. A wide dynamic range in fluid dynamic mixing characteristics was also investigated by modifying the degree of macroscopic mixing and microscopic mixing. The residence time at high temperature was controlled by modifying the frequency of the periodic reacting flow in a pulse combustor. It was found that controlling the flame temperature, chemical kinetics, and residence time at high temperature was best accomplished by controlling the equivalence ratio and the degree of macroscopic mixing rather than controlling the microscopic mixing over the dynamic range obtainable by the techniques used in this study. Emission levels below 5.0 ppm NO x , with corresponding levels of 5.0 ppm CO (corrected to 3% O 2), were achieved in a pulse combustor operating in a lean premixed mode, without the use of any postcombustion cleanup technologies. Both NO x and CO emissions were invariant to changes in the power input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.