Abstract

In many cases of in-situ or point-of-care testing (POCT), the single pursuit of good detection performance cannot meet the testing requirements, and thus no-wash testing has become one of the most effective methods to develop sustainable biosensing assay, providing more convenient operation procedures and shorting the detection time. Herein, a disposable POC biosensing assay was prepared based on the RGB color detector software on the smartphone and the peroxide-like activity of gold nanoparticles (Au NPs) for aflatoxin B1 (AFB1) sensitive detection. Using syringe filters for a simple physical separation procedure can easily realize washing free detection, which is superior to most biosensing assays with cumbersome detection procedures. The syringe filters with 200 nm pore diameter could only pass through small Au NPs (30 nm) while the large-sized SiO2 nanoparticles (300 nm) was blocked on the membrane. In this work, Au NPs utilized their inherent peroxidase-like activity to catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to ox-TMB under acidic conditions, which results in blue color in aqueous solution. The color change due to different antigen concentrations was quantitatively determined by measuring the color intensity with a smartphone and the RGB color detector. By measuring the color intensity, it was known that the linear concentration range of the biosensing assay was 100 fg mL−1 to 50 ng mL−1, and the detection limit of AFB1 was 33 fg mL−1 (S/N = 3). Additionally, the designed biosensing assay exhibited excellent selectivity, storage stability and reproducibility. More importantly, the innovation of detecting and analyzing technology is the outstanding advantage of the biosensing assay, providing a more flexible and convenient strategy for some other small molecule analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call