Abstract

No-tillage is known to optimize soil structure and enhance soil organic carbon (SOC) stocks in cropland. However, the exact mechanisms driving the accumulation of SOC are still unclear, especially concerning the regulation of arbuscular mycorrhizal fungi (AMF) communities and diversity in SOC sequestration. Here, this study aims to elucidate the intricate relationship between AMF community, glomalin-related soil proteins (GRSP), and SOC within bulk soil and aggregates across four tillage treatments (i.e. FA, fallow; RT, rotary tillage; DT, deep tillage; NT, no-tillage) based on a 7-year tillage experiment. Results showed that the contents of SOC and GRSP were significantly higher by 1.14–1.46 mg/g and 0.43–0.72 mg/g in the bulk soil under NT relative to RT and DT, respectively. The contribution of GRSP-C to SOC under NT was also higher than RT and DT, especially in > 53 μm particle size. Additionally, NT increased AMF diversity and the abundance of glomerales and diversisporales, all showing a strong positive correlation with GRSP (p < 0.05), indicating their potential regulatory role in GRSP production. The positive correlations between GRSP and the mass percentage of the > 53 μm particle size fraction (R2 = 0.74; p < 0.01) and MWD (R2 = 0.63; p < 0.01) suggested that no-tillage may drive large aggregates (>53 μm) formation and enhance aggregate stability through GRSP levels. Overall, increased AMF diversity and keystone taxa abundance at the order level via no-tillage promoted SOC accumulation through the production of GRSP and the protection of large aggregates. This study highlights that no-tillage is an effective and sustainable soil management strategy for enhancing soil quality in agricultural ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.