Abstract

PurposeTo determine the contributions of proprioceptive and visual feedbacks for postural control at 6 months following ACLR, and to determine their associations with knee laxity, isokinetic tests and clinical scores.Study designLevel IV, Case series.MethodsFifty volunteers who received ACLR between May 2015 and January 2017 were prospectively enrolled, and at 6 months following ACLR, postural stability was assessed. Somatosensory ratios (somatic proprioception), and visual ratios (visual compensation), were calculated to evaluate the use of sensory inputs for postural control. Univariable regression analyses were performed to determine associations of somatosensory and visual ratios with knee laxity, isokinetic tests and clinical scores.ResultsAt 6 months following ACLR, the somatosensory ratio did not change, while the visual ratio decreased significantly from 5.73 ± 4.13 to 3.07 ± 1.96 (p = 0.002), indicating greater reliance on visual cues to maintain balance. Univariable analyses revealed that the somatosensory ratio was significantly lower for patients who performed aquatic therapy (β = -0.50; p = 0.045), but was not associated with knee laxity, muscle strength or clinical scores. An increased visual ratio was associated with patients who received hamstrings tendon autografts (β = 1.32; p = 0.049), but was not associated with knee laxity, muscle strength or clinical scores.ConclusionAt 6 months following ACLR, visual ratios decreased significantly, while somatosensory ratios did not change. This may suggest that there is little or no improvement in neuromuscular proprioception and therefore greater reliance on visual cues to maintain balance. The clinical relevance of this study is that posturography can provide useful information to help research following ACLR and to predict successful return to play.

Highlights

  • Postoperative rehabilitation strategies and timing of return to play (RTP) are crucial to avoid graft failure following anterior cruciate ligament reconstruction (ACLR) [11, 15, 21, 24, 25, 36]

  • Reliable analysis of postural control can be achieved with modern posturography platforms [25], which can be combined with vision deprivation methods to determine the contributions of proprioceptive and visual feedbacks [8]

  • Univariable analyses revealed that the somatosensory ratio was significantly lower for patients who performed aquatic therapy (β = -0.50; p = 0.045) (Table 3), but was not associated with knee laxity, muscle strength or clinical scores

Read more

Summary

Introduction

Postoperative rehabilitation strategies and timing of return to play (RTP) are crucial to avoid graft failure following anterior cruciate ligament reconstruction (ACLR) [11, 15, 21, 24, 25, 36]. Reliable analysis of postural control can be achieved with modern posturography platforms [25], which can be combined with vision deprivation methods to determine the contributions of proprioceptive and visual feedbacks [8]. The utility of such devices has not yet been demonstrated for research on ACLR. The hypothesis was that proprioceptive feedback improves at 6 months after ACLR, irrespective of knee laxity, muscle strength and clinical scores

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.