Abstract
Roots are considered to be a vital organ system of plants due to their involvement in water and nutrient uptake, anchorage, propagation, storage functions, secondary metabolite (including hormones) biosynthesis, and accumulation. Crops are strongly dependent on the availability of nitrogen in soil and on the efficiency of nitrogen utilization for biomass production and yield. However, knowledge about molecular responses to nitrogen fluctuations mainly derives from the study of model species. Nitric oxide (NO) has been proposed to be implicated in plant adaptation to environment, but its exact role in the response of plants to nutritional stress is still under evaluation. Recently a novel role for NO production and scavenging, thanks to the coordinate spatio-temporal expression of nitrate reductase and non-symbiotic hemoglobins, in the maize root response to nitrate, has been postulated. This control of NO homeostasis is preferentially accomplished by the cells of the root transition zone (TZ) which seems to represent the most nitrate responsive portion of maize root. The TZ is already known to function as a sensory center able to gather information from the external environment and to re-elaborate them in an adequate response. These results indicate that it could play a central role also for nitrate sensing by roots. A lot of work is still needed to identify and characterize other upstream and downstream signals involved in the “nitrate-NO” pathway, leading to root architecture adjustments and finally to stress adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.