Abstract
The last decade has seen a booming of the applications of stereoscopic images/videos and the corresponding technologies, such as 3D modeling, reconstruction, and disparity estimation. However, only a very limited number of stereoscopic image quality assessment metrics was proposed through the years. In this paper, we propose a new no‐reference stereoscopic image quality assessment algorithm based on the nonlinear additive model, ocular dominance model, and saliency based parallax compensation. Our studies using the Toyama database result in three valuable findings. First, quality of the stereoscopic image has a nonlinear relationship with a direct summation of two monoscopic image qualities. Second, it is a rational assumption that the right‐eye response has the higher impact on the stereoscopic image quality, which is based on a sampling survey in the ocular dominance research. Third, the saliency based parallax compensation, resulted from different stereoscopic image contents, is considerably valid to improve the prediction performance of image quality metrics. Experimental results confirm that our proposed stereoscopic image quality assessment paradigm has superior prediction accuracy as compared to state‐of‐the‐art competitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.