Abstract

Blind or No reference quality evaluation is a challenging issue since it is done without access to the original content. In this work, we propose a method based on deep learning for the mesh visual quality assessment without reference. For a given 3D model, we first compute its mesh saliency. Then, we extract views from the 3D mesh and the corresponding mesh saliency. After that, the views are split into small patches that are filtered using a saliency threshold. Only the salient patches are selected and used as input data. After that, three pre-trained deep convolutional neural networks are employed for feature learning: VGG, AlexNet, and ResNet. Each network is fine-tuned and produces a feature vector. The Compact Multi-linear Pooling (CMP) is used afterward to fuse the retrieved vectors into a global feature representation. Finally, fully connected layers followed by a regression module are used to estimate the quality score. Extensive experiments are executed on four mesh quality datasets and comparisons with existing methods demonstrate the effectiveness of our method in terms of correlation with subjective scores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.