Abstract

In this paper, we present a novel no-reference (NR) method to assess the quality of JPEG-coded images using a sequential learning algorithm for growing and pruning radial basis function (GAP-RBF) network. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the functional relationship is approximated using GAP-RBF network. The advantage of using sequential learning algorithm is its capability to learn new samples without affecting the past learning. Further, the sequential learning algorithm requires minimal memory and computational effort. Experimental results prove that the prediction of the trained GAP-RBF network does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.