Abstract

Subjective quality assessment of displayed magnetic resonance (MR) images plays a key role in diagnosis and the resultant treatment. Therefore, this study aims to introduce a new no-reference (NR) image quality assessment (IQA) method for the objective, automatic evaluation of MR images and compare its judgments with those of similar techniques. A novel NR-IQA method was developed. The method uses a sequence of scaled images filtered to enhance high-frequency components and preserve low-frequency parts. Since the human visual system (HVS) is sensitive to local image variations and local features often mimic the attraction of the HVS to high-frequency image regions, they were detected in the filtered images and described. Then, the statistics of obtained descriptors were used to build a quality model via the Support Vector Regression method. The method was compared with 21 state-of-the-art techniques for NR-IQA on a new dataset of 70 distorted MR images assessed by 31 experienced radiologists, using typical evaluation criteria for the comparison of NR measures. The introduced method significantly outperforms the compared approaches, in terms of the correlation with human judgments. It is demonstrated that the presented NR-IQA method for the assessment of MR images is superior to the state-of-the-art NR techniques. The method would be beneficial for a wide range of image processing applications, assessing their outputs and affecting the directions of their development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.