Abstract

Dispersing La 2O 3 on δ- or γ-Al 2O 3 significantly enhances the rate of NO reduction by CH 4 in 1% O 2, compared to unsupported La 2O 3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La 2O 3 precursor used, the pretreatment, and the La 2O 3 loading. The most active family of catalysts consisted of La 2O 3 on γ-Al 2O 3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m 2) occurred between the addition of one and two theoretical monolayers of La 2O 3 on the γ-Al 2O 3 surface. The best catalyst, 40% La 2O 3/γ-Al 2O 3, had a turnover frequency at 700°C of 0.05 s −1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La 2O 3/Al 2O 3 catalysts exhibited stable activity under high conversion conditions as well as high CH 4 selectivity (CH 4 + NO vs. CH 4 + O 2). The addition of Sr to a 20% La 2O 3/γ-Al 2O 3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO = 4 to the latter Sr-promoted La 2O 3/Al 2O 3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La 2O 3. Dispersing La 2O 3 on SiO 2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La 2O 3. This is presumably due to water sensitivity and silicate formation. The La 2O 3/Al 2O 3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.