Abstract

The study of quantum correlations is important for fundamental reasons as well as for quantum communication and information processing tasks. On the one hand, it is of tremendous interest to derive the correlations produced by measurements on separated composite quantum systems from within the set of all correlations obeying the no-signaling principle of relativity, by means of information-theoretic principles. On the other hand, an important ongoing research program concerns the formulation of device-independent cryptographic protocols based on quantum nonlocal correlations for the generation of secure keys, and the amplification and expansion of random bits against general no-signaling adversaries. In both these research programs, a fundamental question arises: Can any measurements on quantum states realize the correlations present in pure extremal no-signaling boxes? Here, we answer this question in full generality showing that no nontrivial (not local realistic) extremal boxes of general no-signaling theories can be realized in quantum theory. We then explore some important consequences of this fact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.