Abstract
We show that the derived category of Brauer–Severi curves satisfies the Jordan–Holder property and cannot have quasi-phantoms, phantoms or universal phantoms. In this way we obtain that quasi-phantoms, phantoms or universal phantoms cannot exist in the derived category of smooth projective curves over a field k. Moreover, we show that a n-dimensional Brauer–Severi variety is completely characterized by the existence of a full weak exceptional collection consisting of pure vector bundles of length n+1, at least in characteristic zero. We conjecture that Brauer–Severi varieties X satisfy rdimcat(X)= ind(X)−1, provided period equals index, and prove this in the case of curves, surfaces and for Brauer–Severi varieties of index at most three. We believe that the results for curves are known to the experts. We nevertheless give the proofs, adding to the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.