Abstract

High-level ab initio calculations at the coupled cluster with single and double substitutions and perturbative treatment of triple substitutions, CCSD(T), level of theory have been carried out for the dimers of coinage metal atoms Cu, Ag, and Au in the ground 1Sigma(g)+ state and in the excited 3Sigma(u)+ state. All of the calculations have been carried out with the inclusion of scalar-relativistic effects via the normalized elimination of the small component (NESC) method. For the dimers in the triplet state, nonzero bond dissociation energies are obtained which vary from 1.3 kcal/mol for 3Cu2 to 4.6 kcal/mol for 3Au2. Taking into account that, in bulky high-spin copper clusters, the bond dissociation energy per atom increases steeply to the value of ca. 19 kcal/mol, the results obtained in the present paper suggest that the bond dissociation energy per atom in high-spin gold clusters may reach extremely high values exceeding 20 kcal/mol thus becoming comparable to the usual bonding due to the spin-pairing mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call