Abstract

Bayesian filters have been considered to help refine and develop theoretical views on spatial cell functions for self-localization. However, extending a Bayesian filter to reproduce insect-like navigation behaviors (e.g., home searching) remains an open and challenging problem. To address this problem, we propose an embodied neural controller for self-localization, foraging, backward homing (BH), and home searching of an advanced mobility sensor (AMOS)-driven insect-like robot. The controller, comprising a navigation module for the Bayesian self-localization and goal-directed control of AMOS and a locomotion module for coordinating the 18 joints of AMOS, leads to its robust insect-like navigation behaviors. As a result, the proposed controller enables AMOS to perform robust foraging, BH, and home searching against various levels of sensory noise, compared to conventional controllers. Its implementation relies only on self-localization and heading perception, rather than global positioning and landmark guidance. Interestingly, the proposed controller makes AMOS achieve spiral searching patterns comparable to those performed by real insects. We also demonstrated the performance of the controller for real-time indoor and outdoor navigation in a real insect-like robot without any landmark and cognitive map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.