Abstract

Key messageThis study presents the first attempt to quantify how the thigmomorphogenetic syndrome is involved in Fagus sylvatica L. tree growth responses to thinning. An experimental design preventing mechanosensing in half of the trees demonstrated that radial growth distribution in roots and along the tree stem is under strong biomechanical control.ContextStudies on the mechanosensitive control of growth under real forest conditions are rare and those existing to date all deal with conifer species. In the current context of global changes, it is important to disentangle how different biotic and abiotic factors affect tree growth.AimsWhereas growth changes after thinning are usually interpreted as responses to decreased competition for resources, this study investigates the importance of how mechanosensing controls growth distribution inside the tree.MethodsIn an even-aged beech stand, 40 pole-sized trees (size class at first thinning) were selected, half of the plot was thinned and, within each sub-plot (thinned and unthinned), half of the tree were guy-wired in order to remove mechanical stimulations to the lower part of the stem. Four years later, all trees were felled and volume increment, ring width distribution along the tree height, and the largest ring width of the structural roots were measured. The effect of mechanical stimulation in the two treatments (thinned and unthinned) was assessed.ResultsRemoval of mechanical stimulation decreased the volume increment in the lower part of the stem as well as radial root growth but did not affect axial growth. When mechanical strain was removed, the ring width distribution along the stem height changed drastically to an ice-cream cone-like distribution, indicating a strong mechanosensitive control of tree shape.ConclusionIn a forest stand, the growth allocation inside the tree is under strong mechanical control. Mechanical stimulations explain more than 50% of the increment stimulated by thinning, whatever the growth indicator. A further challenge is to better understand how cambial cells perceive strains during growth in order to integrate mechanosensing into process-based tree-growth modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call