Abstract

Disassortative mating is a powerful mechanism stabilizing polymorphisms at sex chromosomes and other supergenes. The Alpine silver ant, Formica selysi, has two forms of social organization-single-queen and multiple-queen colonies-determined by alternate haplotypes at a large supergene. Here, we explore whether mate preference contributes to the maintenance of the genetic polymorphism at the social supergene. With mate choice experiments, we found that females and males mated randomly with respect to social form. Moreover, queens were able to produce offspring irrespective of whether they had mated with a male from the same or the alternative social form. Yet, females originating from single-queen colonies were more fertile, suggesting that they may be more successful at independent colony founding. We conclude that the pattern of asymmetric assortative mating documented from mature F.selysi colonies in the field is not caused by mate preferences or major genetic incompatibilities between social forms. More generally, we found no evidence that disassortative mate preference contributes to the maintenance of polymorphism at this supergene controlling ant social organization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call