Abstract

Chemically peculiar stars of the mercury-manganese (HgMn) type represent a new class of spotted late-B stars, in which evolving surface chemical inhomogeneities are apparently unrelated to the presence of strong magnetic fields but are produced by some hitherto unknown astrophysical mechanism. The goal of this study is to perform a detailed line profile variability analysis and carry out a sensitive magnetic field search for one of the brightest HgMn stars - mu Lep. We acquired a set of very high-quality intensity and polarization spectra of mu Lep with the HARPSpol polarimeter. These data were analyzed with the multiline technique of least-squares deconvolution in order to extract information on the magnetic field and line profile variability. Our spectra show very weak but definite variability in the lines of Sc, all Fe-peak elements represented in the spectrum of mu Lep, as well as Y, Sr, and Hg. Variability might also be present in the lines of Si and Mg. Anomalous profile shapes of Ti II and Y II lines suggest a dominant axisymmetric distribution of these elements. At the same time, we found no evidence of the magnetic field in mu Lep, with the 3 sigma upper limit of only 3 G for the mean longitudinal magnetic field. This is the most stringent upper limit on the possible magnetic field derived for a spotted HgMn star. The very weak variability detected for many elements in the spectrum mu Lep suggests that low-contrast chemical inhomogeneities may be common in HgMn stars and that they have not been recognized until now due to the limited precision of previous spectroscopic observations and a lack of time-series data. The null result of the magnetic field search reinforces the conclusion that formation of chemical spots in HgMn stars is not magnetically driven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.