Abstract
Melanopsin, an opsin protein expressed in mammalian retinal ganglion cells (RGCs), makes them responsive to light. Such photosensitive RGCs form the retinohypothalamic tract (RHT) that provides signals to the suprachiasmatic nucleus (SCN), the master regulator of circadian rhythms. The SCN is adjusted daily to the environmental day/night cycle by signal inputs incoming from the RHT. In the present work we have studied, using immunohistochemistry techniques, the types and number of cells which expressed melanopsin during the postnatal development of pigmented C3H/He mice maintained in a standard daily cycle (12-h light/12-h dark). Our results clearly show for the first time that the retina maintains a rather constant number of melanopsin-expressing RGCs from the first postnatal day and, thus, demonstrate that no loss of these photosensitive cells occurs during postnatal development. This supports the general idea that the non-image-forming system, in which these cells are involved, is functional at the very early postnatal stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.