Abstract

We establish a no inner-horizon theorem for black holes with charged scalar hairs. Considering a general gravitational theory with a charged scalar field, we prove that there exists no inner Cauchy horizon for both spherical and planar black holes with non-trivial scalar hair. The hairy black holes approach to a spacelike singularity at late interior time. This result is independent of the form of scalar potentials as well as the asymptotic boundary of spacetimes. We prove that the geometry near the singularity takes a universal Kasner form when the kinetic term of the scalar hair dominates, while novel behaviors different from the Kasner form are uncovered when the scalar potential become important to the background. For the hyperbolic horizon case, we show that hairy black hole can only has at most one inner horizon, and a concrete example with an inner horizon is presented. All these features are also valid for the Einstein gravity coupled with neutral scalars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.