Abstract
The exoplanet HD97658b provides a rare opportunity to probe the atmospheric composition and evolution of moderately irradiated super-Earths. It transits a bright K star at a moderate orbital distance of 0.08 au. Its low density is compatible with a massive steam envelope that could photodissociate at high altitudes and become observable as escaping hydrogen. Our analysis of 3 transits with HST/STIS at Ly-alpha reveals no such signature, suggesting that the thermosphere is not hydrodynamically expanding and is subjected to a low escape of neutral hydrogen (<10^8 g/s at 3 sigma). Using HST Ly-alpha and Chandra & XMM-Newton observations at different epochs, we find that HD97658 is a weak and soft X-ray source with signs of chromospheric variability in the Ly-alpha line core. We determine an average reference for the intrinsic Ly-alpha line and XUV spectrum of the star, and show that HD97658 b is in mild conditions of irradiation compared to other known evaporating exoplanets with an XUV irradiation about 3 times lower than the evaporating warm Neptune GJ436 b. This could be why the thermosphere of HD97658b is not expanding: the low XUV irradiation prevents an efficient photodissociation of any putative steam envelope. Alternatively, it could be linked to a low hydrogen content or inefficient conversion of the stellar energy input. The HD97658 system provides clues for understanding the stability of low-mass planet atmospheres. Our study of HD97658 b can be seen as a control experiment of our methodology, confirming that it does not bias detections of atmospheric escape and underlining its strength and reliability. Our results show that stellar activity can be efficiently discriminated from absorption signatures by a transiting exospheric cloud. They also highlight the potential of observing the upper atmosphere of small transiting planets to probe their physical and chemical properties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.