Abstract

Summary In randomized experiments, adjusting for observed features when estimating treatment effects has been proposed as a way to improve asymptotic efficiency. However, among parametric methods, only linear regression has been proven to form an estimate of the average treatment effect that is asymptotically no less efficient than the treated-minus-control difference in means regardless of the true data generating process. Randomized treatment assignment provides this do-no-harm property, with neither truth of a linear model nor a generative model for the outcomes being required. We present a general calibration method that confers the same no-harm property onto estimators leveraging a broad class of nonlinear models. This recovers the usual regression-adjusted estimator when ordinary least squares is used, and further provides noninferior treatment effect estimators using methods such as logistic and Poisson regression. The resulting estimators are noninferior to both the difference-in-means estimator and to treatment effect estimators that have not undergone calibration. We show that our estimator is asymptotically equivalent to an inverse-probability-weighted estimator using a logit link with predicted potential outcomes as covariates. In a simulation study, we demonstrate that common nonlinear estimators without our calibration procedure may perform markedly worse than both the calibrated estimator and the unadjusted difference in means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.