Abstract

Recent experiments have shown that certain fluid-mechanical systems, namely oil droplets bouncing on oil films, can mimic a wide range of quantum phenomena, including double-slit interference, quantization of angular momentum and Zeeman splitting. Here I investigate what can be learned from these systems concerning no-go theorems as those of Bell and Kochen-Specker. In particular, a model for the Bell experiment is proposed that includes variables describing a 'background' field or medium. This field mimics the surface wave that accompanies the droplets in the fluid-mechanical experiments. It appears that quite generally such a model can violate the Bell inequality and reproduce the quantum statistics, even if it is based on local dynamics only. The reason is that measurement independence is not valid in such models. This opens the door for local 'background-based' theories, describing the interaction of particles and analyzers with a background field, to complete quantum mechanics. Experiments to test these ideas are also proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.