Abstract

An experimental and computational study of NO formation in low-strain-rate partially premixed methane counterflow flames is reported. For progressive fuel-side partial premixing the peak NO concentration increased and the NO distribution along the stagnation streamline broadened. New temperature-dependent emissivity data for a SiO 2-coated Pt thermocouple was used to estimate the radiation correction for the thermocouple, thus improving the accuracy of the reported flame temperature. Flame structure computations with GRIMech 3.00 showed good agreement between measured and computed concentration distributions of NO and OH radical. With progressive partial premixing the contribution of the thermal NO pathway to NO formation increases. The emission index of NO (EINO) first increased and then decreased, reaching its peak value for the level of partial premixing that corresponds to location of the nonpremixed reaction zone at the stagnation plane. The observation of a maximum in EINO at a level of partial premixing corresponding to the nonpremixed reaction zone at the stagnation plane seems to be a consistent feature of low (<20 s −1)-strain-rate counterflow flames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.