Abstract
Although the pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates. Long-lived bony fish (i.e., Class Osteichthyes) are a particularly useful model for studies of senescence because they can readily be aged and exhibit some of the longest lifespans among vertebrates. In this study we examined the potential relationship between age and multiple physiological systems including: stress levels, immune function, and telomere length in individuals ranging in age from 2 to 99 years old in bigmouth buffalo (Ictiobus cyprinellus), the oldest known freshwater teleost fish. Contrary to expectation, we did not find any evidence for age-related declines in these physiological systems. Instead, older fish appeared to be less stressed and had greater immunity than younger fish, suggesting age-related improvements rather than declines in these systems. There was no significant effect of age on telomeres, but individuals that may be more stressed had shorter telomeres. Taken together, these findings suggest that bigmouth buffalo exhibit negligible senescence in multiple physiological systems despite living for nearly a century.
Highlights
The pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates
We investigated the relationship between age and multiple physiological systems that are expected to be important mechanisms of senescence including: an aspect of the stress response, immune function, and telomere length
We examined the relationships between age, NLR, immune function, and telomere length across the lifespan in bigmouth buffalo to gain novel insight into the progression of senescence in several physiological systems in this extremely long-lived vertebrate
Summary
The pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates. There was no significant effect of age on telomeres, but individuals that may be more stressed had shorter telomeres Taken together, these findings suggest that bigmouth buffalo exhibit negligible senescence in multiple physiological systems despite living for nearly a century. Studies on senescence often focus on age-related changes in mortality and fecundity without quantifying changes in the function of physiological systems, and the physiological systems that contribute to differences in senescence patterns are not well understood, especially in long-lived vertebrates. Life history traits make long-lived fish an exceptional model organism for studying senescence in different physiological systems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.