Abstract

When salmonid fish that have been raised in hatcheries spawn in the wild, they often produce fewer surviving adult offspring than wild fish. Recent data from steelhead ( Oncorhynchus mykiss ) in the Hood River (Oregon, USA) show that even one or two generations of hatchery culture can result in dramatic declines in fitness. Although intense domestication selection could cause such declines, it is worth considering alternative explanations. One possibility is heritable epigenetic changes induced by the hatchery environment. Here, we show, using methylation-sensitive amplified fragment length polymorphism, that hatchery and wild adult steelhead from the Hood River do not appear to differ substantially in overall levels of genomic methylation. Thus, although altered methylation of specific DNA sites or other epigenetic processes could still be important, the hatchery environment does not appear to cause a global hypo- or hypermethylation of the genome or create a large number of sites that are differentially methylated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.