Abstract

BackgroundFabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species.ResultsWe first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene.ConclusionWe find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. There is no evidence that T2-RNase lineage genes could be determining GSI in C. striatus. Therefore, to characterize the Fabaceae S-pistil gene(s), expression analyses, levels of diversity, and segregation analyses in controlled crosses are needed for those genes showing high expression levels in the tissues where GSI occurs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0497-2) contains supplementary material, which is available to authorized users.

Highlights

  • Fabaceae species are important in agronomy and livestock nourishment

  • In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses cluster with S-pollen genes

  • Since Mt3, Mt17 and Mt18 genes are not represented in the Affymetrix GeneChip, used in M. truncatula Gene Expression Atlas (Material and Methods), we addressed their expression using blastn and the SRA experiment sets for M. truncatula (99 RNA-Seq data sets from SRP033257 study from a mixed sample of M. truncatula root knot galls infected with Meloidogyne hapla)

Read more

Summary

Introduction

Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. In GSI, if the specificity of the haploid pollen grain matches either one of the diploid pistil, an incompatible reaction occurs, leading to the degradation of the pollen tube within the pistil [10] It should be noted, that in all Fabaceae species where pollen tube growth was assessed in controlled crosses, only in species of the genus Trifolium the GSI reaction seems to be complete and takes place in the stlyle [3,11] as observed in Rosaceae (Rosidae; for a review see [12,13]), Solanaceae (Asteridae; [14]) and Plantaginaceae (Asteridae; [15,16]) SI species. In C. striatus, one of the species here studied, the percentage of ovules that are penetrated by pollen tubes is 72% in hand selfpollinated flowers compared with the 90.6% when hand cross-pollinations are performed [7] These authors have shown that an important fraction of self pollen grains collapse along the style, as observed in Rosaceae, Solanaceae and Plantaginaceae SI species

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call