Abstract

Previous work suggests there may be an effect of transcranial direct current stimulation (tDCS) on appetite control in people at risk of overconsumption, however findings are inconsistent. This study aimed to further understand the potential eating behaviour trait-dependent effect of tDCS, specifically in those with binge-type behaviour. Seventeen females (23 ± 7 years, 25.4 ± 3.8 kg m−2) with mild-to-moderate binge eating behaviour completed two sessions of double-blind, randomised and counterbalanced anodal and sham tDCS applied over the right dorsolateral prefrontal cortex at 2.0 mA for 20 min. Subjective appetite visual analogue scales (VAS), the Food Craving Questionnaire-State (FCQ-S), and Leeds Food Preference Questionnaire (LFPQ) were completed pre- and post-tDCS. Participants then consumed a fixed-energy meal, followed by the VAS, FCQ-S and LFPQ. No difference between pre- and post-tDCS scores were found across fullness (p = 0.275, BF10 = 0.040), prospective consumption (p = 0.127, BF10 = 0.063), desire to eat (p = 0.247, BF10 = 0.054) or FCQ-S measures (p = 0.918, BF10 = 0.040) when comparing active and sham protocols. Only explicit liking and wanting for high-fat sweet foods were significantly different between conditions, with increased scores following active tDCS. When controlling for baseline hunger, the significant differences were removed (p = 0.138 to 0.161, BF10 = 0.810 to 1.074). The present data does not support the eating behaviour trait dependency of tDCS in a specific cohort of female participants with mild-to-moderate binge eating scores, and results align with those from individuals with healthy trait scores. This suggests participants with sub-clinical binge eating behaviour do not respond to tDCS. Future work should further explore effects in clinical and sub-clinical populations displaying susceptibility to overconsumption and weight gain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.