Abstract

Cigarette smoking is a major source of oxidative stress. Protein carbonyls have been used as a biomarker of oxidative stress because of the relative stability of carbonylated proteins and the high protein concentration in blood. Increased levels of carbonyl groups have been found in serum proteins of smokers compared to nonsmokers. However, neither the dose effect of current cigarette smoke nor other predictors of oxidative stress have been studied. Hence, we used an Enzyme-Linked Immunosorbent Assay (ELISA) to evaluate plasma protein carbonyls in smokers recruited in the Early Lung Cancer Action Project (ELCAP) program. The lung cancer screening program enrolled current and former smokers age 60 years and over without a prior cancer diagnosis. A total of 542 participants (282 men and 260 women) completed a baseline questionnaire and provided blood samples for the biomarker study. Protein oxidation was measured by derivatization of the carbonyl groups with 2,4-dinitrophenylhydrazine (DNPH) and ELISA quantitation of the DNPH group. Current smoking status was confirmed with urinary cotinine. The mean (±S.D.) protein carbonyl level was 17.9±2.9 nmol carbonyl/ml plasma. Protein carbonyls did not differ significantly by gender. Carbonyl levels were higher among current than former smokers, but these differences did not attain statistical significance, nor did differences by urine cotinine levels, pack-years, pack/day among current smokers, and smoking duration. In a multiple regression analysis, higher protein carbonyl levels were independently associated with increasing age (0.59 nmol/ml increase per 10 years, 95% CI 0.14, 1.05, p=0.01), African-American vs. white race/ethnicity, (1.30 nmol/ml, 95% CI 0.4, 2.19, p=0.008), and lower educational attainment (0.75 nmol/ml, 95% CI 0.12, 1.38, p=0.02). Although we found no significant difference between current vs. past cigarette smoking and protein carbonyls in this older group of smokers, associations were found for age, ethnicity, and educational attainment. Our results indicate that the measurement of plasma carbonyls by this ELISA technique is still an easy and suitable method for studies of diseases related to oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call