Abstract

Maintenance of normal weight and higher levels of physical activity are associated with a reduced risk of several types of cancer. Because genomic instability is regarded as a hallmark of cancer development, one proposed mechanism is improvement of DNA repair function. We investigated links between dietary weight loss, exercise, and strand break rejoining in an ancillary study to a randomized-controlled trial. Overweight/obese postmenopausal women (n = 439) were randomized to the following: a) reduced calorie weight loss diet ("diet," n = 118), b) moderate- to vigorous-intensity aerobic exercise ("exercise," n = 117), c) a combination ("diet + exercise," n = 117), or d) control (n = 87). The reduced calorie diet had a 10% weight loss goal. The exercise intervention consisted of 45 min of moderate to vigorous aerobic activity 5 d·wk for 12 months. DNA repair capacity was measured in a subset of 226 women at baseline and 12 months from cryopreserved peripheral mononuclear cells using the comet assay. Anthropometric and body composition measures were performed at baseline and 12 months. DNA repair capacity did not change significantly with any of the 12-month interventions compared with control; there were also no significant changes when stratified by changes in body composition or aerobic fitness (V˙O2max). At baseline, DNA repair capacity was positively associated with weight, body mass index, and fat mass (r = 0.20, P = 0.003; r = 0.19, P = 0.004; r = 0.13, P = 0.04, respectively) and inversely with lean body mass (r = -0.14, P = 0.04). In conclusion, DNA repair capacity in cryopreserved PBMCs (Comet Assay) did not change with dietary weight loss or exercise interventions in postmenopausal women within a period of 12 months. Other assays that capture different facets of DNA repair function may be needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.