Abstract
Velocity-mapped imaging and theoretical calculations have been used to study the angular distribution of the products of NO predissociation following its excitation to the 11s, 10p, 11p, and 9f Rydberg levels based on the NO(+) (X (2)Σ(+)) core. The Rydberg states were reached from the NO (A (2)Σ(+), v = 0, N = 2, J = 1.5) level prepared with strong alignment by excitation with linear polarization from NO (X (2)Π, v = 0, N = 1, J = 0.5). Ion dip spectra of the Rydberg states were recorded along with velocity-mapped images at the major peaks. The results are compared to calculations based on a previous theoretical approach modified to include transitions to states of Hund's case (d) coupling. The reasonable agreement shows the predictive value of the theory. The theory has also been used to reassess and explain previous results and to understand variations in the rate of photodissociation with components of the 10p and 11p Rydberg states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of chemical physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.