Abstract

In the central nervous system, NO-dependent cGMP signalling is associated with many different developmental processes and brain functions, including neurogenesis, neuronal development and memory formation. The NO/cGMP signalling cascade is involved in regulating pre- and postsynaptic action by facilitating glutamate release and increasing NMDAR-mediated currents, respectively. These different actions of NO/cGMP have been ascribed to the distinct subcellular localisation of the two known NO-GCs. Immunohistochemical studies indicate a presynaptic localisation of NO-GC1, whereas NO-GC2 is found at the postsynaptic site. Both NO-GC isoforms are required for LTP, as knock-out mice of either one of the NO-sensitive GCs show impaired induction of hippocampal and cortical LTP. FRET-based cGMP indicators (cGi) are an important tool to analyze the temporal resolution of cGMP signals in living cells. Therefore, a transgenic mouse was generated which stably and ubiquitously expresses a cGMP indicator (cGi500). Confocal laser scanning microscopy was used to monitor cGMP signalling in primary cells from cGi500 knock-in mice. Fast and reversible NO-induced cGMP signals were detectable in neurons and astrocytes. Maximal GSNO-induced cGMP responses were similar in both cell types. Cyclic GMP signals in neurons were elicited by approximately ten fold lower GSNO concentrations compared to astrocytes. Whether lower responses of astrocytes to exogenous applied NO could be due to lower amount of cGMP-generating enzymes or different expression pattern of PDEs will be further studied in detail.

Highlights

  • NO-dependent cGMP signalling in neurons and astrocytes

  • In the central nervous system, NO-dependent cGMP signalling is associated with many different developmental processes and brain functions, including neurogenesis, neuronal development and memory formation

  • FRET-based cGMP indicators are an important tool to analyze the temporal resolution of cGMP signals in living cells

Read more

Summary

Introduction

In the central nervous system, NO-dependent cGMP signalling is associated with many different developmental processes and brain functions, including neurogenesis, neuronal development and memory formation. NO-dependent cGMP signalling in neurons and astrocytes Jan Giesen1, Ernst-Martin Füchtbauer2, Doris Koesling1, Michael Russwurm1* From 7th International Conference on cGMP Generators, Effectors and Therapeutic Implications Trier, Germany.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.