Abstract

Unraveling drivers of the interannual variability of tropical land carbon cycle is critical for understanding land carbon-climate feedbacks. Here we utilize two generations of factorial model experiments to show that interannual variability of tropical land carbon uptake under both present and future climate is consistently dominated by terrestrial water availability variations in Earth system models. The magnitude of this interannual sensitivity of tropical land carbon uptake to water availability variations under future climate shows a large spread across the latest 16 models (2.3 ± 1.5 PgC/yr/Tt H2O), which is constrained to 1.3 ± 0.8 PgC/yr/Tt H2O using observations and the emergent constraint methodology. However, the long-term tropical land carbon-climate feedback uncertainties in the latest models can no longer be directly constrained by interannual variability compared with previous models, given that additional important processes are not well reflected in interannual variability but could determine long-term land carbon storage. Our results highlight the limited implication of interannual variability for long-term tropical land carbon-climate feedbacks and help isolate remaining uncertainties with respect to water limitations on tropical land carbon sink in Earth system models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.