Abstract

The no-boundary wavefunction of quantum gravity usually assigns only very small probability to long periods of inflation. This was a reason to doubt about the no-boundary wavefunction to explain the observational universe. We study the no-boundary proposal in the context of multi-field inflation to see whether the number of fields changes the situation. For a simple model, we find that indeed the no-boundary wavefunction can give higher probability for sufficient inflation, but the number of fields involved Nf has to be very high, e.g., Nf ≃ m−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.