Abstract

The objective of this study was to correlate resistance mutations of extended spectrum beta-lactamases (ESBL) and AmpC beta-lactamases and virulence factors (VF) with 30-day mortality in patients treated with either piperacillin-tazobactam or carbapenems. A post-hoc analysis on 123 patients with ceftriaxone-resistant Escherichia coli and Klebsiella pneumoniae bacteremia treated empirically with piperacillin-tazobactam and carbapenems was performed. Beta-lactamase resistance mutations and VF were identified by whole genome sequencing (WGS). The primary endpoint was 30-day mortality. Multivariate analyses were performed using logistic regression. WGS showed diverse multilocus sequence types (MLST) in 43 K. pneumoniae strains, while ST131 predominated in E. coli strains (57/80). CTX-M was most commonly detected (76/80 [95%] of E. coli; 39/43 [91%] of K pneumoniae.), followed by OXA (53/80 [66%] of E. coli; 34/43 [79%] of K. pneumoniae). A significant correlation was found between the number of genes encoding third-generation cephalosporin-resistant beta-lactamases and 30-day mortality (p = 0.045). The positive association was not significant after controlling for empiric carbapenem, Pitt score 3 and K. pneumoniae (OR 2.43, P = 0.073). None of the VF was associated with 30-day mortality. No association was found between 30-day mortality and any ESBL and AmpC beta-lactamases or VF when piperacillin-tazobactam or carbapenems were given. No significant association between 30-day mortality and active empiric therapy was found.

Highlights

  • Extended-spectrum and AmpC beta-lactamase Enterobacteriaceae, which lead to resistance to third generation cephalosporins, have become a global problem[1,2,3]

  • This study aims to correlate resistance mutations and virulence factors of extended spectrum beta-lactamases (ESBL) and AmpC beta-lactamases with 30-day mortality in patients with ceftriaxone-resistant E. coli and K. pneumoniae bacteremia when treated empirically with active piperacillin-tazobactam and carbapenems

  • We examined the effect of ESBL and AmpC resistance mutations, and virulence factors on 30-day mortality of patients with E. coli and K. pneumoniae bacteremia, treated with piperacillin-tazobactam or a carbapenem as active empiric therapy

Read more

Summary

Introduction

Extended-spectrum and AmpC beta-lactamase Enterobacteriaceae, which lead to resistance to third generation cephalosporins, have become a global problem[1,2,3]. The AmpC beta-lactamases are known to be transmissible among Enterobacteriaceae via plasmids[11], and was previously reported in Singapore[8] Due to their increased antibiotic resistance, infections by ESBL- and AmpC-producing bacteria result in increased mortality[12,13,14,15]. Concerns of complex co-resistance mechanisms, including enzymes not well inhibited by tazobactam or clavulanate (e.g., plasmid-derived AmpC), may deter clinicians from using piperacillin-tazobactam for ESBL producing gram negative bacteremia[33]. This study aims to correlate resistance mutations and virulence factors of ESBL and AmpC beta-lactamases with 30-day mortality in patients with ceftriaxone-resistant E. coli and K. pneumoniae bacteremia when treated empirically with active piperacillin-tazobactam and carbapenems

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call