Abstract

We propose a method to produce density forecasts of the term structure of government bond yields that accounts for (i) the possible mispecification of an underlying Gaussian Affine Term Structure Model (GATSM) and (ii) the time varying volatility of interest rates. For this, we derive a Bayesian prior from a GATSM and use it to estimate the coefficients of a BVAR for the term structure, specifying a common, multiplicative, time varying volatility for the VAR disturbances. Results based on U.S. data show that this method significantly improves the precision of point and density forecasts of the term structure. While this paper focuses on term structure modelling, the proposed method can be applied for a wide range of alternative models, including DSGE models, and is a generalization of the method of Del Negro and Schorfheide (2004) to VARs featuring drifting volatilities. The method also generalizes the model of Giannone et al. (2012), by specifying hierarchically not only the prior variance but also the prior mean of the VAR coefficients. Our results show that both time variation in volatilities, and a hierarchical specification for the prior means, improve model fit and forecasting performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.