Abstract

This study examined NO- and non-NO-, non-prostanoid-dependent pathways of agonist-induced vasodilatation in streptozotocin (STZ)-induced diabetic rats and their age-matched controls at 1-2, 8-10 and 18-20 weeks after induction of diabetes. Using laser Doppler flowmetry, vasodilatory responses to acetylcholine (ACh; 0.1 mM) and morpholino-sydnonimine (SIN-1) were determined in the presence of Ringer solution, during inhibition of NO synthase (NOS) and cyclo-oxygenase (COX) with N(omega)-nitro-L-arginine (L-NNA; 1 mM) + indomethacin (10(-5) M), and during inhibition of K(+) channels, NOS and COX with tetraethylammonium (TEA; 10 mM) + L-NNA + indomethacin. Basal NOS activity and nerve conduction velocity were also determined. In age-matched controls, SIN-1-induced vasodilatation in the presence of TEA + L-NNA + indomethacin, basal NOS activity and the initial vasodilatory response to ACh during NOS and COX inhibition all decreased with maturation. In STZ-induced diabetics, SIN-1-induced vasodilatation in the presence of TEA + L-NNA + indomethacin was impaired immediately after induction of diabetes, but not at 18-20 weeks. NOS activity in STZ-induced diabetics displayed a transient 2-fold increase at 8-10 weeks, decreasing to age-matched control levels at 18-20 weeks. At 18-20 weeks of STZ-induced diabetes, ACh-induced vasodilatation during NOS and COX inhibition was prolonged due to increased K(+) channel activity and experimental diabetic sensory neuropathy (EDN) had developed. Thus, in sciatic nerve microcirculation of STZ-induced diabetic rats: (1) diabetic impairment of vasodilatation in response to exogenous NO was transient; (2) non-NO-, non-prostanoid-dependent vasodilatation and K(+) channel activity were augmented in STZ-induced diabetes; and (3) alterations in NO bioactivity were not related to the development of EDN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.