Abstract

This contribution attempts to determine the [Formula: see text]-quark pole mass [Formula: see text] and [Formula: see text] running mass [Formula: see text] with two different approaches at the next-to-next-to-leading order (NNLO) corrections. At the first approach, we derive a relation between the [Formula: see text]-quark pole mass [Formula: see text] and its [Formula: see text] running mass [Formula: see text] at the NNLO corrections based on the perturbative Quantum Chromo Dynamics (pQCD) predictions. At the second approach, we extract numerical values of the [Formula: see text]-quark pole and [Formula: see text] running masses based on the NNLO phenomenology of H1 and ZEUS Collaborations combined beauty vertex production experimental data. Then we discuss about the compatibility between the pQCD theory results and phenomenology approach in determination of the [Formula: see text]-quark pole and [Formula: see text] running masses at the NNLO corrections. Also, we investigate the role and influence of the [Formula: see text]-quark mass as an extra degree of freedom added to the input parameters of the Standard Model Lagrangian, on the improvement of the uncertainty band of the proton parton distribution functions (PDFs) and particularly on the gluon distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.