Abstract

Artificial neural network (ANN) based signal processing methods have been shown to have significant robustness in processing complex, degraded, noisy, and unstable signals. A novel approach to automated electromyogram (EMG) signal decomposition, using an ANN processing architecture, is presented in this paper. Due to the lack of a priori knowledge of motor unit action potential (MUAP) morphology, the EMG decomposition must be performed in an unsupervised manner. An ANN classifier, consisting of a multilayer perceptron neural network and employing a novel unsupervised training strategy, is proposed. The ANN learns repetitive appearances of MUAP waveforms from their suspected occurrences in a filtered EMG signal in an autoassociative learning task. The same training waveforms are fed into the trained ANN and the output of the ANN is fed back to its input, giving rise to a dynamic retrieval net classifier. For each waveform in the data, the network discovers a feature vector associated with that waveform. For each waveform, classification is achieved by comparing its feature vector with those of the other waveforms. Firing information of each MUAP is further used to refine the classification results of the ANN classifier. Then, individual MUAP waveform shapes are derived and their firing tables are created.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call