Abstract

Natural products containing N-N bonds exhibit important biological activity. Current methods for constructing N-N bonds have limited scope. An advanced understanding of the fundamental N-N bond formation/cleavage processes occurring at the transition-metal center would facilitate the development of catalytic reactions. Herein we present an N-N bond-forming reductive elimination, which proceeds via a mixed-valent Ni(II) -Ni(III) intermediate with a Ni-Ni bond order of zero. The discrete Ni(II) -Ni(III) oxidation states contrast with the cationic dimeric Ni analogue, in which both Ni centers are equivalent with an oxidation state of 2.5. The electronic structures of these mixed-valent complexes have implications for the fundamental understanding of metal-metal bonding interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call