Abstract

In patients with endometriosis, refluxed endometrial fragments evade host immunosurveillance, developing into endometriotic lesions. However, the mechanisms underlying this evasion have not been fully elucidated. N-Myc and STAT Interactor (NMI) have been identified as key players in host immunosurveillance, including interferon (IFN)-induced cell death signaling pathways. NMI levels are markedly reduced in the stromal cells of human endometriotic lesions due to modulation by the Estrogen Receptor beta/Histone Deacetylase 8 axis. Knocking down NMI in immortalized human endometrial stromal cells (IHESCs) led to elevated RNA levels of genes involved in cell-to-cell adhesion and extracellular matrix signaling following IFNA treatment. Furthermore, NMI knockdown inhibited IFN-regulated canonical signaling pathways, such as apoptosis mediated by Interferon Stimulated Gene Factor 3 and necroptosis upon IFNA treatment. In contrast, NMI knockdown with IFNA treatment activated non-canonical IFN-regulated signaling pathways that promote proliferation, including β-Catenin and AKT signaling. Moreover, NMI knockdown in IHESCs stimulated ectopic lesions' growth in mouse endometriosis models. Therefore, NMI is a novel endometriosis suppressor, enhancing apoptosis and inhibiting proliferation and cell adhesion of endometrial cells upon IFN exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.