Abstract

Models are used in science and engineering for experimentation, analysis, model-based diagnosis, design and planning/sheduling applications. Many of these models are overconstrained Numeric Constraint Satisfaction Problems (NCSP), where the numeric constraints could have linear or polynomial relations. In practical scenarios, it is very useful to know which parts of the overconstrained NCSP instances cause the unsolvability.Although there are algorithms to find all optimal solutions for this problem, they are computationally expensive, and hence may not be applicable to large and real-world problems. Our objective is to improve the performance of these algorithms for numeric domains using structural analysis. We provide experimental results showing that the use of the different strategies proposed leads to a substantially improved performance and it facilitates the application of solving larger and more realistic problems.KeywordsConstraint NetworkNumeric DomainPolynomial RelationNumeric ConstraintNeighborhood ConceptThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.